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Abstract

We extend the linear “stick-slip” models of Doi-Edwards and Johnson-Stacer to
nonlinear tube reptation models. We then show that such models, when combined with
probabilistic formulations allowing distributions of relaxation times, provide a good
description of dynamic experiments with highly filled rubber in tensile deformations.
A connection to other applications including dielectric polarization and reptation in
other viscoelastic materials (e.g., living tissue) is noted.
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1 Introduction

This note is prompted by several thrusts in our research efforts. The first is to extend
linear reptation models for polymeric materials to models incorporating nonlinearities and
to use the resulting systems to explain molecular based hysteresis (e.g., via internal variable
formulations). A second direction involves exploration of multiscale aspects of polymeric
structural modeling with uncertainty at the molecular (micro) level. We do this in the
context of a probabilistic formulation of the models to produce a suitable overall system
(macro) response to deformations. The ideas are illustrated in a specific application to
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Figure 1: Experimental stress-strain curves for (1) unfilled, (2) lightly filled and (3) highly
filled rubber in tensile deformations

highly filled rubber exhibiting significant hysteresis as well as nonlinearity in tensile and
shear deformations as depicted in Figure 1.

Indeed, the ideas reported here were motivated by earlier efforts (summarized in [7]
and the references therein) using a phenomenological approach to filled rubber modeling
where we encountered significant hysteresis. The phenomenological approach entailed the
use of Boltzmann hysteresis operators with nonlinearities that were necessary to describe
experimental data. Our desire to understand the models at a more mechanistic level led to
the linear molecular models of Doi and Edwards [15] and Johnson and Stacer [20]. Linear
versions of those formulations did not lead (see [6]) to the types of nonlinear hysteresis
formulations sought after.

The focus here is on viscoelastic polymers, but the underlying ideas are much more widely
applicable to problems in biology (living tissue, disease pathogenesis [5]), dielectric materials
(polarization effects), industrial fluids (polymeric melts), and ecological migrations (hidden
or internal episodic behaviors). For example, treating shear waves in living tissue requires
nonlinear constitutive laws that are hysteretic in nature ([3, 8, 17]). Molecular level (internal
strain) formulations also utilize multiple relaxation time constants precisely such as those in
the models developed below. Multiple relaxation times play an important role in molecular
based (tube reptation) nonlinear constitutive models for the flow of polyethylene melts ([11,
12, 13, 18, 22]). For dielectric materials, it has been known for some time ([14, 25, 26]) that
one needs distributed relaxation times in polarization models for heterogeneous materials.
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For example, it is desirable to represent the complex dielectric permittivity ([14]) in terms
of a probability density φ over relaxation times as in

ε(ω) = ε∞ + (εs − ε∞)
∫ ∞

0

φ(τ)dτ

1 + jωτ
.

This can be written in a more familiar form as

ε(ω) = ε∞ + (εs − ε∞)
∫ ∞

0

φ(τ)dτ

1 + ω2τ 2
− j(εs − ε∞)

∫ ∞

0

ωτφ(τ)dτ

1 + ω2τ 2
.

The latter formulations are analogous to proposed forms of the “elastic” moduli based on
experimental observations in the works of Ferry, Andrews, Ter Haar and others [2, 16, 23,
24, 27]. We describe in detail the incorporation of multiple relaxation times in our models
in Section 4.

In Section 2 we give a brief review of the linear reptation models developed by Johnson
and Stacer and then in the next section provide the details on our extension to nonlinear
versions of these models. In Sections 4 and 5 we explain how these models have led to a
molecular based fit of dynamic models to experimental data for highly filled rubber in tensile
and shear deformations.

2 Linear reptation models

Tube reptation models for deformations of viscoelastic polymers were introduced by Doi and
Edwards [15], and were further developed by Johnson, et.al., in several papers [19, 20]. In
this section we give a brief overview of their models and assumptions in the case of tensile
deformations since they serve as a starting point for the derivation of our nonlinear reptation
model in Section 3.

The Doi-Edwards “stick-slip” model assumes that the polymer is composed of chemically
cross-linked (CC) tubes that contain physically constrained (PC) molecules. At the time an
instantaneous tensile step-strain is applied, the entrapped PC molecules stick to the tube
and elongate with it, but then they contract and slip back close to their original length. This
provides the viscoelastic character of the material. In particular, the relaxation is modelled
in the following way. Let L(t) denote the length of the chemically cross-linked molecule,
while `(t) stands for the length of the physically constrained one. Assume that the PC
molecule elongates to length `∗ due to the applied step-strain. Then

`(t) = `(0) + (`∗ − `(0))e−t/τ 0 = t0 < t < t1, (2.1)

where τ is the relaxation time for the “slip” motion, and t1 denotes the time the next step-
strain is applied. It is assumed in [15] and in the continuum realization of this model in [20]
that the “stick” phase of the motion at the time of the step-strain deforms the PC molecule
proportionally with the CC tube deformation, i.e.,

∆`i

∆Li

=
`i

Li

, i = 0, 1, . . . . (2.2)
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Here Li and `i denote the length of the CC and PC molecules at time ti, respectively, while
∆Li and ∆`i stand for the instantaneous stretches, i.e., Li = Li−1+∆Li−1, `i = `i−1+∆`i−1.
Using this assumption we can write (2.1) as

`(t) = `0 +
`0

L0

∆L0e
−t/τ , 0 = t0 < t < t1. (2.3)

Continuous motion is approximated by a series of step-strain deformations applied in ∆t
intervals, where ∆t → 0. This leads to the relaxation equation

`(t) = `0 +
∫ t

0

`(s)

L(s)

dL(s)

ds
e−(t−s)/τds,

or, in differential form,

d`

dt
=

`0

τ
−

(
1

τ
− 1

L

dL

dt

)
`. (2.4)

When this model is assembled into a 3-D continuum model of a solid, one defines a unit
box or cell at each material point oriented by the principal stretches (λ1c, λ2c, λ3c) of the CC
system with an inside box with parallel sides (λ1p, λ2p, λ3p) for the PC system. Stresses are
calculated by determining how the strain energy function W, which has contribution Wcc

from the CC box and Wpc from the PC system, changes with respect to the applied stretches
or displacements of the CC system. In turn, the stretches of the PC box are treated as
internal variables depending on the stretches of the CC system. We note that as an analogy
to (2.2) we have

∂λjp

∂λic

=
λjp

λic

δji, (2.5)

where δji is the Kronecker delta function. Thus we have that the strain energy density
function is

W = Wpc + Wcc = Wpc(λ1p, λ2p, λ3p) + Wcc(λ1c, λ2c, λ3c), (2.6)

and the internal dynamics (2.4) (with `0 = 1) yields

dλip

dt
=

1

τ
−

(
1

τ
− 1

λic

dλic

dt

)
λip, (2.7)

since the principal directions of the PC and CC system are aligned. The Cauchy stress in
the principal direction ej (where ej is a unit vector in the xj direction) is given by

τj = λjc
∂W

∂λjc

− P, (2.8)
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where P is the hydrostatic stress. We combine (2.6) and (2.8) with the assumption that λip

depend on λic as internal variables and obtain

τj = λjc
∂Wcc

∂λjc

+ λjc

3∑

i=1

∂Wpc

∂λip

∂λip

∂λjc

− P

= λjc
∂Wcc

∂λjc

+ λjp
∂Wpc

∂λjp

− P

by applying (2.5). If we choose j = 1 for the direction of loading, we have

τ2 = τ3 = 0 = λ2c
∂Wcc

∂λ2c

+ λ2p
∂Wpc

∂λ2p

− P (2.9)

because stresses are zero on the sides of a tensile sample. Since P can be determined from
(2.9), we obtain that the tensile Cauchy stress is

τ1 = λ1c

(
∂Wcc

∂λ1c

− λ2c
∂Wcc

∂λ2c

)
+ λ1p

(
∂Wpc

∂λ1p

− λ2p
∂Wpc

∂λ2p

)
,

while the engineering stress is given by

σ1 =
τ1

λ1c

=

(
∂Wcc

∂λ1c

− λ2c
∂Wcc

∂λ2c

)
+

λ1p

λ1c

(
∂Wpc

∂λ1p

− λ2p
∂Wpc

∂λ2p

)
.

This model was analyzed in [6] for incompressible rubber materials undergoing large dynamic
tensile strains with a particular strain energy function provided in [21].

Let up, uc denote the deformation of the PC and CC boxes, respectively. With λ1p =
1 + ∂xup and λ1c = 1 + ∂xuc, (2.7) implies that

∂

∂t
(1 + ∂xup) =

1

τ
−

{
1

τ
− (1 + ∂xuc)

−1 ∂2uc

∂t∂x

}
(1 + ∂xup).

This in turn yields the internal dynamics

ε̇1 +
1

τ
ε1 = ε̇(1 + ε1)/(1 + ε)

in terms of the infinitesimal strains ε1 = ∂xup for the PC system and ε = ∂xuc for the
CC system. It is shown in [6] that the above derivation leads to an approximation of the
engineering stress in the form

σ1(ε, ε1) ≈ (1248− 1014
∂up

∂x
)
∂uc

∂x
+ 1014

∂up

∂x
= (1248− 1014 ε1)ε + 1014ε1.

This can be combined with the basic model for the longitudinal vibrations of a rubber rod
as given, for example in [10], by

ρAc
∂2uc

∂t2
− AcCD

∂3uc

∂t∂x2
− ∂

∂x
[Acσ1] = F, (2.10)

where F is the applied external force, Ac is the cross-sectional area and ρ is the mass density
of the material.
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3 Nonlinear reptation model

In this section we present a nonlinear extension of the “stick-slip” model of Doi and Edwards
for tensile deformations. A crucial assumption throughout the derivation in the previous
section was that the elongation of the PC molecules is proportional to that of the CC
molecules during the “stick” phase of the motion, i.e., ∆`

∆L
= `

L
, or ∂λjp

∂λic
= λjp

λic
δji as in (2.2)

and (2.5). It might be expected that for certain materials and large strains this relationship
is not strictly linear, but rather, it is described by a general nonlinear function f that may
also depend on time, i.e.,

∆`

∆L
= f(t,

`

L
), or

∂λjp

∂λic

= f(t,
λjp

λic

)δji. (3.1)

Thus we have that the relaxation equation after an instantaneous step-strain, in contrast
with (2.3), is given by

`(t) = `0 + f(t0,
`0

L0

)∆L0e
−(t−t0)/τ , 0 = t0 < t < t1.

Similarly, for t ∈ (tm−1, tm), m ≥ 1 we have

`(t) = `0 +
m−1∑

i=0

f(ti,
`i

Li

)∆Lie
−(t−ti)/τ .

In the limit, as ∆t = tm − tm−1 tends to zero we obtain

`(t) = `0 +
∫ t

0
f(s,

`(s)

L(s)
)
dL(s)

ds
e−(t−s)/τds.

Thus

d`

dt
= f(t,

`(t)

L(t)
)
dL

dt
− 1

τ
(`(t)− `0)

describes the continuous motion of the CC-PC system in differential form. Now we take
`0 = 1, ` = 1 + ε1, L = 1 + ε and we obtain the internal dynamics

ε̇1 +
1

τ
ε1 = ε̇f(t,

1 + ε1

1 + ε
). (3.2)

As in the previous case we can add this equation to the general model for the longitudinal
vibrations of a rubber rod (2.10).

Before turning to the engineering stress σ1 and describing how it is affected by the
nonlinear assumption (3.1), we consider approximations of (3.2). Assuming that f is time
invariant and expanding it in a Taylor series, we obtain

f(
1 + ε1

1 + ε
) = f(1) + f ′(1)

(
1 + ε1

1 + ε
− 1

)
+

f ′′(1)

2

(
1 + ε1

1 + ε
− 1

)2

+ . . .

= f(1) + f ′(1)
(

ε1 − ε

1 + ε

)
+

f ′′(1)

2

(
ε1 − ε

1 + ε

)2

+ . . .

= γ0 + δε1 + γ1ε + γ2ε
2 + h.o.t.(εk, k ≥ 3) + h.o.t.(εk

1, k ≥ 2)

+ h.o.t.(εkεj
1, k, j ≥ 1).
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If ε1 << ε, we find the approximate equation for (3.2) given by

ε̇1 +
1

τ
ε1 = ε̇(γ0 + γ1ε + γ2ε

2). (3.3)

We note that this approximation corresponds to our earlier phenomenological internal vari-
able formulation in [10]

ε̇1 +
1

τ
ε1 =

d

dt
gv(ε),

where gv is a cubic polynomial.
Now we turn to the derivation of an approximation to the engineering stress σ1 in presence

of the nonlinear assumption (3.1). Let us make similar assumptions to those that we made
for the linear model in Section 2. Namely, we have that the strain energy function W is
given as

W = Wpc + Wcc = Wpc(λ1p, λ2p, λ3p) + Wcc(λ1c, λ2c, λ3c), (3.4)

so that

τj = λjc
∂W

∂λjc

− P,

where the λip and λic are the principal stretches of the PC and CC systems, respectively.
Additionally, we assume that f in (3.1) is independent of time, i.e., f(t, θ) = f(θ). Since the
λip depend on the λic as internal variables, the Cauchy stress can again be given in the form

τj = λjc
∂Wcc

∂λjc

+ λjc

3∑

i=1

∂Wpc

∂λip

∂λip

∂λjc

− P. (3.5)

At this point our derivation differs from the one in the previous section. By (3.1)

∂λip

∂λjc

= f(
λip

λjc

)δij,

so (3.5) yields

τj = λjc
∂Wcc

∂λjc

+ λjc

3∑

i=1

∂Wpc

∂λip

f(
λip

λjc

)δij − P. (3.6)

If j = 1 denotes the direction of loading, then we have

τ2 = τ3 = 0 = λ2c
∂Wcc

∂λ2c

+ λ2c
∂Wpc

∂λ2p

f(
λ2p

λ2c

)− P. (3.7)

We can express P from (3.7) and substitute into (3.6) with j = 1 to find

τ1 = λ1c
∂Wcc

∂λ1c

+ λ1c
∂Wpc

∂λ1p

f(
λ1p

λ1c

)−
[
λ2c

∂Wcc

∂λ2c

+ λ2c
∂Wpc

∂λ2p

f(
λ2p

λ2c

)

]
.
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Now the engineering stress σ1 is given by

σ1 =
∂Wcc

∂λ1c

− λ2c

λ1c

∂Wcc

∂λ2c

+
∂Wpc

∂λ1p

f(
λ1p

λ1c

)− λ2c

λ1c

∂Wpc

∂λ2p

f(
λ2p

λ2c

). (3.8)

The first two terms on the right side above constitute the contribution of Wcc to the engi-
neering stress σ1, while the last two terms provide the contribution of Wpc. We assume that
the energy density function W is given as in (3.4) with

Wcc = C1(I1 − 3) + C2(I2 − 3),

Wpc = C3(Ĩ1 − 3) + C4(Ĩ1 − 3)2 + C5(Ĩ2 − 3)3,

where specific values of the coefficients C1, . . . , C5 can be chosen as in [6] given the strain
energy function suggested by Johnson and Stacer based on experimental data [21]. Here the
strain invariants are

I1 = λ2
1c + λ2

2c + λ2
3c, I2 = λ2

1cλ
2
2c + λ2

1cλ
2
3c + λ2

2cλ
2
3c,

while
Ĩ1 = λ2

1p + λ2
2p + λ2

3p, Ĩ2 = λ2
1pλ

2
2p + λ2

1pλ
2
3p + λ2

2pλ
2
3p.

We also impose the incompressibility condition in the principle stretches for the PC and CC
systems, respectively, i.e., λ1pλ2pλ3p = λ1cλ2cλ3c = 1. We can compute the contribution of
Wcc to the engineering stress exactly the same way as in [6]

∂Wcc

∂λ1c

− λ2c

λ1c

∂Wcc

∂λ2c

= Aλ1c + B − A

λ2
1c

− B

λ3
1c

= A(1 + ε) + B − A

(1 + ε)2
− B

(1 + ε)3
, (3.9)

where A and B are appropriate constants depending on the values of C1, . . . , C5. Note that
in this calculation we use the relationship λ2c = λ3c = 1√

λ1c
in the incompressible CC system

under tensile deformation in the x1 direction. A Taylor expansion of the negative powers of
(1 + ε) in (3.9) yields

∂Wcc

∂λ1c

− λ2c

λ1c

∂Wcc

∂λ2c

= a1ε + a2ε
2 + . . . + akε

k + . . . . (3.10)

Next we turn to the contribution of Wpc to the engineering stress, where the nonlinear
assumption (3.1) modifies the results of the linear case. We find that

f(
λ1p

λ1c

)
∂Wpc

∂λ1p

− λ2c

λ1c

f(
λ2p

λ2c

)
∂Wpc

∂λ2p

=

f(
λ1p

λ1c

)

[
2C3λ1p + 4C4λ1p(λ

2
1p +

2

λ1p

− 3) + 12C5(2λ1p +
1

λ2
1p

− 3)2

]

− 1

λ
3/2
1c

f(

√√√√λ1c

λ1p

)


2C3

1√
λ1p

+ 4C4
1√
λ1p

(λ2
1p +

2

λ1p

− 3)

+3C5(2λ1p +
1

λ2
1p

− 3)2(2λ
3/2
1p +

2

λ
3/2
1p

)


 .
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We assume that ε1 << ε and use the following approximations

f(
λ1p

λ1c

) = f(
1 + ε1

1 + ε
) = f(1) + f ′(1)

ε1 − ε

1 + ε
+

f ′′(1)

2

(
ε1 − ε

1 + ε

)2

+ . . .

≈ f(1) + f ′(1)
ε1 − ε

1 + ε
≈ f(1) + f ′(1)(−ε)(1− ε + ε2 − ε3 + . . .)

= α0 + α1ε + α2ε
2 + . . . ,

f(

√√√√λ1c

λ1p

) = f(

√
1 + ε

1 + ε1

) ≈ f(
√

1 + ε) = f(1) + f ′(1)(
√

1 + ε− 1)

+
f ′′(1)

2
(
√

1 + ε− 1)2 + . . . = β0 + β1ε + β2ε
2 + β3ε

3 + . . . ,

where we expanded
√

1 + ε in powers of ε. With similar expansions for 1
λ1p

, 1
λ2
1p

, 1√
λ1p

, λ
3/2
1p ,

λ
−3/2
1p , λ

−3/2
1c we obtain that

f(
λ1p

λ1c

)
∂Wpc

∂λ1p

− λ2c

λ1c

f(
λ2p

λ2c

)
∂Wpc

∂λ2p

= δ1ε1 + δ2ε
2
1 + . . . + γ1ε + γ2ε

2 + . . .

+h.o.t.(εkεj
1, k, j ≥ 1). (3.11)

Combining (3.10) and (3.11) with (3.8), we have the following approximation for the engi-
neering stress

σ1(ε, ε1) = c1ε + c2ε
2 + c3ε

3 + h.o.t.(εk, k ≥ 4) + δ1ε1 + h.o.t.(εk
1, k ≥ 2)

+h.o.t.(εkεj
1, k, j ≥ 1) ≈ c1ε + c2ε

2 + c3ε
3 + δ1ε1. (3.12)

We remark that the constitutive equation σ1 = ge(ε) + CDε̇ + µ1ε1, where ge is a cubic
polynomial of the form

ge(ε) = c1ε + c2ε
2 + c3ε

3, (3.13)

was assumed based on phenomenological arguments in [10] and, as we shall note below in
Section 5, it has been successfully used in reproducing experimental data for shear deforma-
tions of rubber samples as well as for large tensile deformations of a rubber rod. We also
point out that the presence of the ε̇ term in this formulation for σ1 represents an approxi-
mation to a damping mechanism (certainly present in the case of highly filled rubber) and
does not result from the nonlinear reptation formulation.

4 General tensile models with multiple relaxation times

The above model with (2.10), (3.2) (with f independent of t) and (3.12) forms the basis of
a general class of nonlinear deformation models for polymers in tension. More generally, the
system written in distributional or generalized sense (see [7, 10]) has the form

ρAc
∂2u

∂t2
− ∂

∂x
(AcΣ1(ε, ε̇, ε1)) = F (4.1)

9



where

Σ1(ε, ε̇, ε1) = σelast(ε, ε̇) + σvisco(ε1) (4.2)

and

ε̇1 +
1

τ
ε1 = ε̇f(

1 + ε1

1 + ε
). (4.3)

However, such models are based on the tacit assumption that all molecules relax with the
same relaxation time τ. There is substantial experimental evidence [2, 16, 23, 24, 27] to
suggest that the assumption of a uniform relaxation time is not valid. Indeed, when fitting
“elastic” moduli

E(ω) = E ′(ω) + jE ′′(ω) =
∫ ∞

0

ω2τ 2

1 + ω2τ 2
φ(τ)dτ + j

∫ ∞

0

ωτ

1 + ω2τ 2
φ(τ)dτ

to response data in the frequency domain, it is often necessary to use a probability density
φ for the distribution of relaxation times.

In the context of the reptation models developed here, this implies that one should
replace the engineering stress Σ1 in (4.2) by a probability measure or probability distribution
dependent stress-strain law of the form

Σ1(ε, ε̇, Φ) = σelast(ε, ε̇) +
∫ ∞

τ0
ε1(τ)dΦ(τ), (4.4)

where t → ε1(t; τ) is the solution of (4.3) for a given τ, Φ is a probability distribution for the
relaxation times τ, and τ0 > 0 is a lower bound on possible relaxation times. For the special
case of an absolutely continuous distribution this, of course, reduces to

Σ1(ε, ε̇, Φ) = σelast(ε, ε̇) +
∫ ∞

τ0
ε1(τ)φ(τ)dτ,

where φ = Φ′. For a distribution consisting of a finite number of Dirac measures with atoms
at τ1, τ2, . . . , τM , respectively, we have

Σ1(ε, ε̇, Φ) = σelast(ε, ε̇) +
M∑

i=1

piε1(τi), (4.5)

where
∑M

i=1 pi = 1 and t → ε1(t; τi) satisfies (4.3) with τ = τi, i = 1, 2, . . . ,M.
A general theory of existence and uniqueness that applies to systems (4.1) with various

approximations of (4.3), and (4.5), i.e., the discrete measure case, can be found in [1]. A
theory for continuous dependence of solutions with respect to parameters (specifically with
respect to the discrete measure in (4.5)) can be pursued in the context of the Prohorov
metric topology on the space of probability distributions. In this situation this is equivalent
to the weak-star topology on the distributions if they are viewed as a subset of the dual
space of C[τ0, τ̄ ], the space of bounded continuous functions on a finite interval [τ0, τ̄ ] of
relaxation times (see [4, 5] for a discussion of the Prohorov metric and its use in inverse
problems for systems containing uncertainty in the “parameters” in the setting of measure
or probability distribution dependent systems). Efforts are currently underway to develop
a rigorous theory for well-posedness (including continuous dependence with respect to the
measures Φ) of systems with (4.4) as the general measure dependent engineering stress law.
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5 Application to experimental data

Systems such as (4.1), (4.3) with (4.4) certainly pose conceptual, theoretical and computa-
tional challenges even when treating forward or simulation problems. Even more difficulties
are presented by estimation or inverse problems wherein one attempts to use experimental
data to determine the distribution Φ, parameters in σelast, or f in (4.4) and (4.3), respec-
tively. However, significant progress on such problems has been achieved. In a recent sum-
mary [7], results are reported on using Σ1 of the form (4.5) in experimental, computational
and theoretical investigations for filled rubber rods in tensile and shear deformations. In
the following we describe the use of models with approximations such as in (3.3) and (3.12),
that is, dropping the h.o.t. terms, to fit data from dynamic experiments for rubber samples
in tension.

We summarize here some of the results obtained using dynamic experiments with a rubber
rod with a tip mass at one end in uniaxial tensile deformation. Similar experimental efforts
to validate models for filled rubber samples in shear were successfully carried out as well (see
[7]). The experimental device constructed specifically for these tensile validation tests at the
Thomas Lord Research Center of the Lord Corporation is depicted schematically in Figure
2. This experiment produced data {zi} consisting of time measurements of force (at the tip
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Figure 2: Schematic of the experimental device for tensile validation tests

of the rod, x = 0) collected by a load cell. The data corresponds to the engineering stress
Σ1 at times ti at the top of the rod, x = 0, multiplied by the cross sectional area Ac. Thus
a least squares formulation for estimation of parameters q has the form

J(q) =
∑

i

|zi − AcΣ1(ε(ti, 0), ε̇(ti, 0), Φ)|2, (5.1)
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with ε(t, x) = ∂u
∂x

(t, x), where Σ1 is given by (4.5). Here ε1 satisfies (4.3) with f approximated
as in (3.3) for each τi, and σelast is given by

σelast(ε, ε̇) = ge(ε) + CDε̇,

where ge is a cubic polynomial as in (3.13). To be more precise, experimental data suggested
that the nonlinearity f was not the same when tensile deformation was increasing as when de-
creasing. Hence the approximation in (3.3) was employed with two sets of γi’s, one set {γinc

i }
for increasing deformations and one set {γdec

i } for decreasing deformations. The parameter q
to be estimated from the data using (5.1) thus consisted of ρ, CD, {γinc

i }, {γdec
i }, c1, c2, c3 and

the τi’s in (4.5). For the results described here we fixed M = 2 in (4.5) with p1 = p2 = 1/2.
For highly filled rubber we found estimation with one uniform relaxation time (M = 1)
would not adequately describe the data. The details for the case M = 2 are given in [7, 10]
and a typical comparison of the optimized fit model (i.e., model with estimated parameters)
to data is depicted in Figure 3.
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Figure 3: Approximation with two internal variables (dashed line) and experimental data
(solid line)

Partial theoretical foundations for such inverse problems are available [9] with a complete
theory currently being pursued by the authors of this paper. As we noted above, in [1],
well-posedness results (existence, uniqueness) for forward systems of the form (4.1), with
various approximations of (4.3), and (4.5) are given under quite general assumptions on the

12



nonlinearities. A careful formulation of the associated inverse problem for estimation of Φ
in a class of probability measures P is given in [5] in the context of the Prohorov metric
topology on P . Computational approaches for problems similar to these are discussed in [4].
Our efforts to develop a complete theoretical as well as computational framework for inverse
problems entailing (4.1), (4.3), (4.4) are underway.

Acknowledgments

This research was supported in part by the U.S. Air Force Office of Scientific Research under
grants AFOSR F49620-01-1-0026 (HTB and NGM) and AFOSR F49620-03-1-0185 (GAP)
and was facilitated through visits of the authors to the Statistical and Applied Mathemat-
ical Sciences Institute, (SAMSI), which is funded by NSF under grant DMS-0112069. The
first author (HTB) is grateful to Prof. J. Whiteman and the Brunel Institute of Computa-
tional Mathematics, Uxbridge, UK for the opportunity to participate in the “International
Workshop on Viscoelastic Constitutive Modelling and Computation”, June 25, 2003, which
stimulated new directions for this research.

References

[1] A.C. Ackleh, H.T. Banks and G.A. Pinter, Well-posedness results for models of
elastomers, J. Math. Analysis and Applications 268 (2002), 440-456.

[2] R.D. Andrews, Correlation of dynamic and static measurements on rubberlike ma-
terials, Ind. Engr. Chem., 44 (1952), 707-715.

[3] H.T. Banks, J.H. Barnes, A. Eberhardt, H.T. Tran and S. Wynne, Modeling and
computation of propagating waves from coronary stenoses, Comp. and Applied
Math., 21 (2002), 1-22.

[4] H.T. Banks and K. Bihari, Modeling and estimating uncertainty in parameter esti-
mation, CRSC-TR99-40, NCSU, December 1999; Inverse Problems 17 (2001), 1-17.

[5] H.T. Banks, D. Bortz, G.A. Pinter and L.K. Potter, Modeling and imaging tech-
niques with potential application in bioterrorism, CRSC-TR03-02, NCSU, January
2003; Chapter 6 in Bioterrorism: Mathematical Modeling Applications in Homeland
Security, (H.T. Banks and C. Castillo-Chavez, eds.), Frontiers in Applied Mathe-
matics, Vol.28, SIAM, Philadelphia, 2003, 129-154.

[6] H.T. Banks and N.G. Medhin, A molecular based dynamic model for viscoelastic
responses of rubber in tensile deformations, CRSC-TR00-27, NCSU, October, 2000;
Communications on Applied Nonlinear Analysis 8 (2001), 1-18.

13



[7] H.T. Banks, N.G. Medhin and G.A. Pinter, Multiscale considerations in modeling of
nonlinear elastomers, CRSC-TR03-42, NCSU, October, 2003; J. Comp. Meth. Sci.
Engr., submitted.

[8] H.T. Banks, H.T. Tran S. Wynne, A well-posedness result for a shear wave prop-
agation model, Intl. Series Num. Math., Vol.143, Birkhauser Verlag, Basel, 2002,
25-40.

[9] H.T. Banks and G.A. Pinter, Approximation results for parameter estimation in
a class of abstract nonlinear hyperbolic systems, Appl. Math. Letters 12 (1999),
129-133.

[10] H.T. Banks, G.A. Pintér, L.K. Potter, M.J. Gaitens and L.C. Yanyo, Modeling
of nonlinear hysteresis in elastomers under uniaxial tension, J. Intelligent Material
Systems and Structures 10 (1999), 116-134.

[11] G. Bishko, T.C.B. McLeish, O.G. Harlen and R.G. Larson, Theoretical molecular
rheology of branched polymers in simple and complex flows: The pom-pom model,
Phys. Rev. Lett., 79 (1997), 2352-2355.

[12] R. Blackwell, O.G. Harlen and T.C.B. McLeish, Theoretical linear and nonlinear
rheology of symmetric treelike polymer melts, Macromolecules 34 (2001), 2579-2596.

[13] R. Blackwell, T.C.B. McLeish and O.G. Harlen, Molecular drag-strain coupling in
branched polymer melts, J. Rheology 44 (2000), 121-136.
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